8 research outputs found

    IoT-Fog-Edge-Cloud Computing Simulation Tools, A Systematic Review

    Get PDF
    The Internet of Things (IoT) perspective promises substantial advancements in sectors such as smart homes and infrastructure, smart health, smart environmental conditions, smart cities, energy, transportation and mobility, manufacturing and retail, farming, and so on. Cloud computing (CC) offers appealing computational and storage options; nevertheless, cloud-based explanations are frequently conveyed by downsides and constraints, such as energy consumption, latency, privacy, and bandwidth. To address the shortcomings related to CC, the advancements like Fog Computing (FC) and Edge Computing (EC) are introduced later on. FC is a novel and developing technology that connects the cloud to the network edges, allowing for decentrali zed computation. EC, in which processing and storage are performed nearer to where data is created, may be able to assist address these issues by satisfying particular needs such as low latency or lower energy use. This study provides a comprehensive overview and analysis of IoT-Fog-Edge-Cloud Computing simulation tools to assist researchers and developers in selecting the appropriate device for research studies while working through various scenarios and addressing current reality challenges. This study also takes a close look at various modeling tools, which are examined and contrasted to improve the future

    FOHC: Firefly Optimizer Enabled Hybrid approach for Cancer Classification

    Get PDF
    Early detection and prediction of cancer, a group of chronic diseases responsible for a large number of deaths each year and a serious public health hazard, can lead to more effective treatment at an earlier stage in the disease's progression. In the current era, machine learning (ML) has widely been used to develop predictive models for incurable diseases such as cancer, heart disease, and diabetes, among others, taking into account both existing datasets and personally collected datasets, more research is still being conducted in this area. Using recursive feature elimination (RFE), principal component analysis (PCA), the Firefly Algorithm (FA), and a support vector machine (SVM) classifier, this study proposed a Firefly Optimizer-enabled Hybrid approach for Cancer classification (FOHC). This study considers feature selection and dimensionality reduction techniques RFE and PCA, and FA is used as the optimization algorithm. In the last stage, the SVM is applied to the pre-processed dataset as the classifier. To evaluate the proposed model, empirical analysis has been carried out on three different kinds of cancer disease datasets including Brain, Breast, and Lung cancer obtained from the UCI-ML warehouse. Based on the various performance parameters like accuracy, error rate, precision, recall, f-measure, etc., some experiments are carried out on the Jupyter platform using Python codes. This proposed model, FOHC, surpasses previous methods and other considered state-of-the-art works, with 98.94% accuracy for Breast cancer, 95.58% accuracy for Lung cancer, and 96.34% accuracy for Brain cancer. The outcomes of these experiments represent the effectiveness of the proposed work

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding Bill & Melinda Gates Foundation

    CanDiag: Fog Empowered Transfer Deep Learning Based Approach for Cancer Diagnosis

    No full text
    Breast cancer poses the greatest long-term health risk to women worldwide, in both industrialized and developing nations. Early detection of breast cancer allows for treatment to begin before the disease has a chance to spread to other parts of the body. The Internet of Things (IoT) allows for automated analysis and classification of medical pictures, allowing for quicker and more effective data processing. Nevertheless, Fog computing principles should be used instead of Cloud computing concepts alone to provide rapid responses while still meeting the requirements for low latency, energy consumption, security, and privacy. In this paper, we present CanDiag, an approach to cancer diagnosis based on Transfer Deep Learning (TDL) that makes use of Fog computing. This paper details an automated, real-time approach to diagnosing breast cancer using deep learning (DL) and mammography pictures from the Mammographic Image Analysis Society (MIAS) library. To obtain better prediction results, transfer learning (TL) techniques such as GoogleNet, ResNet50, ResNet101, InceptionV3, AlexNet, VGG16, and VGG19 were combined with the well-known DL approach of the convolutional neural network (CNN). The feature reduction technique principal component analysis (PCA) and the classifier support vector machine (SVM) were also applied with these TDLs. Detailed simulations were run to assess seven performance and seven network metrics to prove the viability of the proposed approach. This study on an enormous dataset of mammography images categorized as normal and abnormal, respectively, achieved an accuracy, MCR, precision, sensitivity, specificity, f1-score, and MCC of 99.01%, 0.99%, 98.89%, 99.86%, 95.85%, 99.37%, and 97.02%, outperforming some previous studies based on mammography images. It can be shown from the trials that the inclusion of the Fog computing concepts empowers the system by reducing the load on centralized servers, increasing productivity, and maintaining the security and integrity of patient data

    INCU Analyzer for Infant Incubator Based on Android Application Using Bluetooth Communication to Improve Calibration Monitoring

    No full text
    Worldwide, over 4 million babies die within a month of birth each year. Of these, 3.9 million are in developing countries. A proportion approximately 25% of these deaths are due to complications of premature birth, most commonly inadequate thermoregulation, water loss, and neonatal jaundice. An infant incubator provides stable temperature, relative humidity, and airflow values. A periodical calibration should be applied on infant incubator to monitor the functionality. The study aims to develop a calibration device that measures temperature, humidity, airflow, and noise in the baby incubator based on an Android application with Bluetooth communication to improve the calibration monitoring process. This is to achieve a better performance of the conventional INCU analyzer. The contribution of this research is that the values of the temperature, humidity, airflow, and noise can be displayed on both devices, the INCU analyzer machine, and mobile phone; thus, the user can monitor the measurement activities wirelessly. Furthermore, the statistical calculation for all measurements can be saved on a mobile phone device. The main design consists of temperature sensor LM35, humidity sensor DHT22, airflow sensor MPX5010DP, an analog signal conditioning circuit, an Arduino Mega microcontroller, Bluetooth module HC05, and Android mobile phone. The resulting design was compared to the standard or calibrator INCU analyzer machine (Fluke Biomedical INCU II). This study found that the smallest error is -1.72%°C, -0.106 % RH, -1.727% dB, and <0.1% m/s for temperature, humidity, noise, and airflow parameters, respectively. After the evaluation process, this device can be used as an INCU analyzer to calibrate the infant incubator

    Growth and antioxidant responses in plants induced by heavy metals present in fly ash

    No full text

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    No full text
    Background The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods For this analysis, we constructed burden-weighted dose-response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15-95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15-39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0-0) and 0.603 (0.400-1.00) standard drinks per day, and the NDE varied between 0.002 (0-0) and 1.75 (0.698-4.30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0.114 (0-0.403) to 1.87 (0.500-3.30) standard drinks per day and an NDE that ranged between 0.193 (0-0.900) and 6.94 (3.40-8.30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59.1% (54.3-65.4) were aged 15-39 years and 76.9% (73.0-81.3) were male. Interpretation There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol

    Population-level risks of alcohol consumption by amount, geography, age, sex, and year: a systematic analysis for the Global Burden of Disease Study 2020

    Get PDF
    Background: The health risks associated with moderate alcohol consumption continue to be debated. Small amounts of alcohol might lower the risk of some health outcomes but increase the risk of others, suggesting that the overall risk depends, in part, on background disease rates, which vary by region, age, sex, and year. Methods: For this analysis, we constructed burden-weighted dose–response relative risk curves across 22 health outcomes to estimate the theoretical minimum risk exposure level (TMREL) and non-drinker equivalence (NDE), the consumption level at which the health risk is equivalent to that of a non-drinker, using disease rates from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2020 for 21 regions, including 204 countries and territories, by 5-year age group, sex, and year for individuals aged 15–95 years and older from 1990 to 2020. Based on the NDE, we quantified the population consuming harmful amounts of alcohol. Findings: The burden-weighted relative risk curves for alcohol use varied by region and age. Among individuals aged 15–39 years in 2020, the TMREL varied between 0 (95% uncertainty interval 0–0) and 0·603 (0·400–1·00) standard drinks per day, and the NDE varied between 0·002 (0–0) and 1·75 (0·698–4·30) standard drinks per day. Among individuals aged 40 years and older, the burden-weighted relative risk curve was J-shaped for all regions, with a 2020 TMREL that ranged from 0·114 (0–0·403) to 1·87 (0·500–3·30) standard drinks per day and an NDE that ranged between 0·193 (0–0·900) and 6·94 (3·40–8·30) standard drinks per day. Among individuals consuming harmful amounts of alcohol in 2020, 59·1% (54·3–65·4) were aged 15–39 years and 76·9% (73·0–81·3) were male. Interpretation: There is strong evidence to support recommendations on alcohol consumption varying by age and location. Stronger interventions, particularly those tailored towards younger individuals, are needed to reduce the substantial global health loss attributable to alcohol. Funding: Bill & Melinda Gates Foundation
    corecore